Topic 2: Streaming Wavelet Data
Contents
Topic 2: Streaming Wavelet Data¶
Often, CSL programs contain tasks that are activated in response to the arrival of wavelets of specific colors. Such tasks are also called Wavelet-Triggered Tasks, or data tasks.
In this example, the comptime
block binds a data task to a data_task_id
created from a memcpy
streaming color, which receives data from the host.
The routing of the color MEMCPYH2D_DATA_1
must not be defined.
The memcpy
module will figure out the routing of MEMCPYH2D_DATA_1
.
Given the task and color association and the route, when a wavelet of
color MEMCPYH2D_DATA_1
arrives at the router, it is forwarded to the CE,
which then activates main_task
. The wavelet’s payload field is received in
the argument to the task, and the code uses the wavelet data to update a global
variable.
layout.csl¶
// color/ task ID map
//
// ID var ID var ID var ID var
// 0 MEMCPY_H2D_DATA_1 9 18 27 reserved (memcpy)
// 1 MEMCPY_D2H_DATA_1 10 19 28 reserved (memcpy)
// 2 LAUNCH 11 20 29 reserved
// 3 12 21 reserved (memcpy) 30 reserved (memcpy)
// 4 13 22 reserved (memcpy) 31 reserved
// 5 14 23 reserved (memcpy) 32
// 6 15 24 33
// 7 16 25 34
// 8 17 26 35
// IDs for memcpy streaming colors
param MEMCPYH2D_DATA_1_ID: i16;
param MEMCPYD2H_DATA_1_ID: i16;
// Colors
const MEMCPYH2D_DATA_1: color = @get_color(MEMCPYH2D_DATA_1_ID);
const MEMCPYD2H_DATA_1: color = @get_color(MEMCPYD2H_DATA_1_ID);
const LAUNCH: color = @get_color(2);
// Task IDs
const main_task_id: data_task_id = @get_data_task_id(MEMCPYH2D_DATA_1);
const memcpy = @import_module( "<memcpy/get_params>", .{
.width = 1,
.height = 1,
.MEMCPYH2D_1 = MEMCPYH2D_DATA_1,
.MEMCPYD2H_1 = MEMCPYD2H_DATA_1,
.LAUNCH = LAUNCH
});
layout {
@set_rectangle(1, 1);
@set_tile_code(0, 0, "pe_program.csl", .{
.memcpy_params = memcpy.get_params(0),
.main_task_id = main_task_id
});
}
pe_program.csl¶
// Not a complete program; the top-level source file is layout.csl.
param memcpy_params: comptime_struct;
// Task IDs
param main_task_id: data_task_id; // Data task main_task triggered by wlts along MEMCPYH2D_DATA_1
const sys_mod = @import_module( "<memcpy/memcpy>", memcpy_params);
export var global: i16 = 0;
const out_dsd = @get_dsd(fabout_dsd, .{
.extent = 1,
.fabric_color = sys_mod.MEMCPYD2H_1
});
task main_task(wavelet_data: i16) void {
global = wavelet_data;
// The non-async operation works here because only one wavelet is sent
// It would be better to use async operation with .{async = true}
@mov16(out_dsd, global);
}
comptime {
@bind_data_task(main_task, main_task_id);
}
run.py¶
#!/usr/bin/env cs_python
import argparse
import json
import numpy as np
from cerebras.sdk.sdk_utils import memcpy_view, input_array_to_u32
from cerebras.sdk.runtime.sdkruntimepybind import SdkRuntime, MemcpyDataType # pylint: disable=no-name-in-module
from cerebras.sdk.runtime.sdkruntimepybind import MemcpyOrder # pylint: disable=no-name-in-module
parser = argparse.ArgumentParser()
parser.add_argument('--name', help='the test name')
parser.add_argument("--cmaddr", help="IP:port for CS system")
args = parser.parse_args()
dirname = args.name
# Parse the compile metadata
with open(f"{dirname}/out.json", encoding="utf-8") as json_file:
compile_data = json.load(json_file)
params = compile_data["params"]
MEMCPYH2D_DATA_1 = int(params["MEMCPYH2D_DATA_1_ID"])
MEMCPYD2H_DATA_1 = int(params["MEMCPYD2H_DATA_1_ID"])
print(f"MEMCPYH2D_DATA_1 = {MEMCPYH2D_DATA_1}")
print(f"MEMCPYD2H_DATA_1 = {MEMCPYD2H_DATA_1}")
memcpy_dtype = MemcpyDataType.MEMCPY_16BIT
runner = SdkRuntime(dirname, cmaddr=args.cmaddr)
runner.load()
runner.run()
input_tensor = np.array([42], dtype=np.int16)
print("step 1: streaming H2D")
# "input_tensor" is a 1d array
# The type of input_tensor is int16, we need to extend it to uint32
# There are two kind of extension when using the utility function input_array_to_u32
# input_array_to_u32(np_arr: np.ndarray, sentinel: Optional[int], fast_dim_sz: int)
# 1) zero extension:
# sentinel = None
# 2) upper 16-bit is the index of the array:
# sentinel is Not None
#
# In this example, the upper 16-bit is don't care because pe_program.csl only define
# WTT to read lower 16-bit
#tensors_u32 = runtime_utils.input_array_to_u32(input_tensor, 1, 1)
tensors_u32 = input_array_to_u32(input_tensor, 1, 1)
runner.memcpy_h2d(MEMCPYH2D_DATA_1, tensors_u32, 0, 0, 1, 1, 1, \
streaming=True, data_type=memcpy_dtype, order=MemcpyOrder.COL_MAJOR, nonblock=True)
print("step 2: streaming D2H")
# The D2H buffer must be of type u32
out_tensors_u32 = np.zeros(1, np.uint32)
runner.memcpy_d2h(out_tensors_u32, MEMCPYD2H_DATA_1, 0, 0, 1, 1, 1, \
streaming=True, data_type=memcpy_dtype, order=MemcpyOrder.COL_MAJOR, nonblock=False)
# remove upper 16-bit of each u32
result_tensor = memcpy_view(out_tensors_u32, np.dtype(np.int16))
runner.stop()
# Ensure that the result matches our expectation
np.testing.assert_equal(result_tensor, [42])
print("SUCCESS!")
commands.sh¶
#!/usr/bin/env bash
set -e
cslc ./layout.csl --fabric-dims=8,3 \
--fabric-offsets=4,1 -o out \
--params=MEMCPYH2D_DATA_1_ID:0 \
--params=MEMCPYD2H_DATA_1_ID:1 \
--memcpy --channels=1 --width-west-buf=0 --width-east-buf=0
cs_python run.py --name out