Topic 6: Libraries
Contents
Topic 6: Libraries¶
The CSL compiler comes bundled with a few standard libraries, which can be
imported into the user’s program using the @import_module()
builtin. This
example shows three such compiler-bundled libraries:
the
random
library for generating uniform random numbers,the
timestamp
library for reading the on-chip timestamp counter, andthe
math
library for square root.
layout.csl¶
// color/ task ID map
//
// ID var ID var ID var ID var
// 0 D2H_1 9 18 27 reserved (memcpy)
// 1 10 19 28 reserved (memcpy)
// 2 LAUNCH 11 20 29 reserved
// 3 12 21 reserved (memcpy) 30 reserved (memcpy)
// 4 13 22 reserved (memcpy) 31 reserved
// 5 14 23 reserved (memcpy) 32
// 6 15 24 33
// 7 16 25 34
// 8 main_task_id 17 26 35
//
param MEMCPYD2H_DATA_1_ID: i16; // ID for memcpy streaming colors
param iterations: u32;
// Colors
const MEMCPYD2H_DATA_1: color = @get_color(MEMCPYD2H_DATA_1_ID);
const LAUNCH: color = @get_color(2);
// Task IDs
const main_task_id: local_task_id = @get_local_task_id(8);
const memcpy = @import_module( "<memcpy/get_params>", .{
.width = 1,
.height = 1,
.MEMCPYD2H_1 = MEMCPYD2H_DATA_1,
.LAUNCH = LAUNCH
});
layout {
@set_rectangle(1, 1);
@set_tile_code(0, 0, "pe_program.csl", .{
.memcpy_params = memcpy.get_params(0),
.main_task_id = main_task_id,
.iterations = iterations
});
// export symbol name
@export_name("f_run", fn()void);
@export_name("f_send_timestamps", fn()void);
}
pe_program.csl¶
// Not a complete program; the top-level source file is layout.csl.
param memcpy_params: comptime_struct;
param iterations: u32;
// Task IDs
param main_task_id: local_task_id;
// memcpy module reserves input queue 0 and output queue 0
const sys_mod = @import_module( "<memcpy/memcpy>", memcpy_params);
// Import compiler-bundled libraries, which are identified by names surrounded
// by angular brackets ('<' and '>').
const random = @import_module("<random>");
const tsc = @import_module("<time>");
const math = @import_module("<math>");
// Declare variables for storing the timestamp counter at the start and the end
// of the core computation.
var startBuffer = @zeros([tsc.tsc_size_words]u16);
var finishBuffer = @zeros([tsc.tsc_size_words]u16);
var timeBuffer = @zeros([tsc.tsc_size_words*2]u16);
/// Send the final result to the host.
fn sendResult(result: f32) void {
const resultDsd = @get_dsd(fabout_dsd, .{
.extent = 1,
.fabric_color = sys_mod.MEMCPYD2H_1,
.output_queue = @get_output_queue(1)
});
// The sync operation works here because the length is 1
// It would better to use {.async=true}
@fmovs(resultDsd, result);
}
/// Send the begin and end timestamp counters to the host, which then performs a
/// 48-bit subtraction to get the final cycle count.
fn sendTimeStampCounters() void {
timeBuffer[0] = startBuffer[0];
timeBuffer[1] = startBuffer[1];
timeBuffer[2] = startBuffer[2];
timeBuffer[3] = finishBuffer[0];
timeBuffer[4] = finishBuffer[1];
timeBuffer[5] = finishBuffer[2];
const timeBufferDsd = @get_dsd(mem1d_dsd, .{
.tensor_access = |i|{tsc.tsc_size_words*2} -> timeBuffer[i]
});
const timeStampDsd = @get_dsd(fabout_dsd, .{
.extent = tsc.tsc_size_words*2,
.fabric_color = sys_mod.MEMCPYD2H_1,
.output_queue = @get_output_queue(1)
});
@mov16(timeStampDsd, timeBufferDsd, .{.async=true});
}
task mainTask() void {
var idx: u32 = 0;
var hitCount: u32 = 0;
tsc.enable_tsc();
tsc.get_timestamp(&startBuffer);
// For each iteration, compute two random values between -1 and +1, and check
// whether they are inside the circle of unit radius.
while (idx < iterations) : (idx += 1) {
var x = random.random_f32(-1.0, 1.0);
var y = random.random_f32(-1.0, 1.0);
var distanceFromOrigin = math.sqrt_f32(x * x + y * y);
if (distanceFromOrigin <= 1.0) {
hitCount += 1;
}
}
tsc.get_timestamp(&finishBuffer);
sendResult(4.0 * @as(f32, hitCount) / @as(f32, iterations));
}
comptime {
@bind_local_task(mainTask, main_task_id);
}
fn f_run() void {
@activate(main_task_id);
// RPC returns early before the data is sent out via D2H color
// The host must wait for streaming D2H
// WARNING: the user must unblock cmd color for every PE
sys_mod.unblock_cmd_stream();
}
fn f_send_timestamps() void {
sendTimeStampCounters();
// RPC returns early before the data is sent out via D2H color
// The host must wait for streaming D2H
// WARNING: the user must unblock cmd color for every PE
sys_mod.unblock_cmd_stream();
}
comptime{
@export_symbol(f_run);
@export_symbol(f_send_timestamps);
@rpc(@get_data_task_id(sys_mod.LAUNCH));
}
run.py¶
#!/usr/bin/env cs_python
import argparse
import json
import numpy as np
from cerebras.sdk.sdk_utils import memcpy_view
from cerebras.sdk.runtime.sdkruntimepybind import SdkRuntime, MemcpyDataType # pylint: disable=no-name-in-module
from cerebras.sdk.runtime.sdkruntimepybind import MemcpyOrder # pylint: disable=no-name-in-module
parser = argparse.ArgumentParser()
parser.add_argument('--name', help='the test name')
parser.add_argument("--cmaddr", help="IP:port for CS system")
parser.add_argument("--tolerance", type=float, help="tolerance for result")
args = parser.parse_args()
dirname = args.name
# Parse the compile metadata
with open(f"{dirname}/out.json", encoding="utf-8") as json_file:
compile_data = json.load(json_file)
params = compile_data["params"]
MEMCPYD2H_DATA_1 = int(params["MEMCPYD2H_DATA_1_ID"])
print(f"MEMCPYD2H_DATA_1 = {MEMCPYD2H_DATA_1}")
print("The simfab may take 25 sec more")
runner = SdkRuntime(dirname, cmaddr=args.cmaddr)
runner.load()
runner.run()
print("step 1: call f_run to start streaming D2H (result)")
runner.launch("f_run", nonblock=False)
print("step 2: streaming D2H (result)")
# The D2H buffer must be of type u32
result = np.zeros(1, np.float32)
runner.memcpy_d2h(result, MEMCPYD2H_DATA_1, 0, 0, 1, 1, 1, \
streaming=True, data_type=MemcpyDataType.MEMCPY_32BIT, \
order=MemcpyOrder.COL_MAJOR, nonblock=False)
print("step 3: call f_send_timestamps to start streaming D2H (timestamp)")
runner.launch("f_send_timestamps", nonblock=False)
print("step 4: streaming D2H (timestamps)")
# The D2H buffer must be of type u32
timestamps_u32 = np.zeros(6, np.uint32)
runner.memcpy_d2h(timestamps_u32, MEMCPYD2H_DATA_1, 0, 0, 1, 1, 6, \
streaming=True, data_type=MemcpyDataType.MEMCPY_16BIT, \
order=MemcpyOrder.COL_MAJOR, nonblock=False)
# remove upper 16-bit of each u32
timestamps = memcpy_view(timestamps_u32, np.dtype(np.uint16))
runner.stop()
# Helper functions for computing the delta in the cycle count
def make_u48(words):
return words[0] + (words[1] << 16) + (words[2] << 32)
def subtract_timestamps(words):
return make_u48(words[3:]) - make_u48(words[0:3])
cycles = subtract_timestamps(timestamps)
print("cycle count:", cycles)
print(f"result = {result}, np.pi = {np.pi}, tol = {args.tolerance}")
np.testing.assert_allclose(result, np.pi, atol=args.tolerance, rtol=0)
print("SUCCESS!")
commands.sh¶
#!/usr/bin/env bash
set -e
cslc ./layout.csl --fabric-dims=8,3 --fabric-offsets=4,1 \
--params=iterations:200 -o out \
--params=MEMCPYD2H_DATA_1_ID:1 \
--memcpy --channels=1 --width-west-buf=0 --width-east-buf=0
cs_python run.py --name out --tolerance 0.1